summaryrefslogtreecommitdiff
path: root/node_modules/jsbn
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/jsbn')
-rw-r--r--node_modules/jsbn/.npmignore2
-rw-r--r--node_modules/jsbn/LICENSE40
-rw-r--r--node_modules/jsbn/README.md175
-rw-r--r--node_modules/jsbn/example.html12
-rw-r--r--node_modules/jsbn/example.js3
-rw-r--r--node_modules/jsbn/index.js1357
-rw-r--r--node_modules/jsbn/package.json21
7 files changed, 0 insertions, 1610 deletions
diff --git a/node_modules/jsbn/.npmignore b/node_modules/jsbn/.npmignore
deleted file mode 100644
index 28f1ba7..0000000
--- a/node_modules/jsbn/.npmignore
+++ /dev/null
@@ -1,2 +0,0 @@
-node_modules
-.DS_Store \ No newline at end of file
diff --git a/node_modules/jsbn/LICENSE b/node_modules/jsbn/LICENSE
deleted file mode 100644
index 2a6457e..0000000
--- a/node_modules/jsbn/LICENSE
+++ /dev/null
@@ -1,40 +0,0 @@
-Licensing
----------
-
-This software is covered under the following copyright:
-
-/*
- * Copyright (c) 2003-2005 Tom Wu
- * All Rights Reserved.
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
- * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- *
- * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
- * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
- * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
- * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
- * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * In addition, the following condition applies:
- *
- * All redistributions must retain an intact copy of this copyright notice
- * and disclaimer.
- */
-
-Address all questions regarding this license to:
-
- Tom Wu
- tjw@cs.Stanford.EDU \ No newline at end of file
diff --git a/node_modules/jsbn/README.md b/node_modules/jsbn/README.md
deleted file mode 100644
index 7aac67f..0000000
--- a/node_modules/jsbn/README.md
+++ /dev/null
@@ -1,175 +0,0 @@
-# jsbn: javascript big number
-
-[Tom Wu's Original Website](http://www-cs-students.stanford.edu/~tjw/jsbn/)
-
-I felt compelled to put this on github and publish to npm. I haven't tested every other big integer library out there, but the few that I have tested in comparison to this one have not even come close in performance. I am aware of the `bi` module on npm, however it has been modified and I wanted to publish the original without modifications. This is jsbn and jsbn2 from Tom Wu's original website above, with the modular pattern applied to prevent global leaks and to allow for use with node.js on the server side.
-
-## usage
-
- var BigInteger = require('jsbn');
-
- var a = new BigInteger('91823918239182398123');
- alert(a.bitLength()); // 67
-
-
-## API
-
-### bi.toString()
-
-returns the base-10 number as a string
-
-### bi.negate()
-
-returns a new BigInteger equal to the negation of `bi`
-
-### bi.abs
-
-returns new BI of absolute value
-
-### bi.compareTo
-
-
-
-### bi.bitLength
-
-
-
-### bi.mod
-
-
-
-### bi.modPowInt
-
-
-
-### bi.clone
-
-
-
-### bi.intValue
-
-
-
-### bi.byteValue
-
-
-
-### bi.shortValue
-
-
-
-### bi.signum
-
-
-
-### bi.toByteArray
-
-
-
-### bi.equals
-
-
-
-### bi.min
-
-
-
-### bi.max
-
-
-
-### bi.and
-
-
-
-### bi.or
-
-
-
-### bi.xor
-
-
-
-### bi.andNot
-
-
-
-### bi.not
-
-
-
-### bi.shiftLeft
-
-
-
-### bi.shiftRight
-
-
-
-### bi.getLowestSetBit
-
-
-
-### bi.bitCount
-
-
-
-### bi.testBit
-
-
-
-### bi.setBit
-
-
-
-### bi.clearBit
-
-
-
-### bi.flipBit
-
-
-
-### bi.add
-
-
-
-### bi.subtract
-
-
-
-### bi.multiply
-
-
-
-### bi.divide
-
-
-
-### bi.remainder
-
-
-
-### bi.divideAndRemainder
-
-
-
-### bi.modPow
-
-
-
-### bi.modInverse
-
-
-
-### bi.pow
-
-
-
-### bi.gcd
-
-
-
-### bi.isProbablePrime
-
-
diff --git a/node_modules/jsbn/example.html b/node_modules/jsbn/example.html
deleted file mode 100644
index 7c26a56..0000000
--- a/node_modules/jsbn/example.html
+++ /dev/null
@@ -1,12 +0,0 @@
-<!DOCTYPE html>
-<html lang="en">
- <head>
- <meta charset="utf-8">
- <title></title>
- </head>
- <body>
-
-
- <script src="index.js"></script>
- </body>
-</html> \ No newline at end of file
diff --git a/node_modules/jsbn/example.js b/node_modules/jsbn/example.js
deleted file mode 100644
index 664c1b4..0000000
--- a/node_modules/jsbn/example.js
+++ /dev/null
@@ -1,3 +0,0 @@
-var BigInteger = require('./');
-var a = new BigInteger('91823918239182398123');
-console.log(a.bitLength()); \ No newline at end of file
diff --git a/node_modules/jsbn/index.js b/node_modules/jsbn/index.js
deleted file mode 100644
index 973226d..0000000
--- a/node_modules/jsbn/index.js
+++ /dev/null
@@ -1,1357 +0,0 @@
-(function(){
-
- // Copyright (c) 2005 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
-
- // Basic JavaScript BN library - subset useful for RSA encryption.
-
- // Bits per digit
- var dbits;
-
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary&0xffffff)==0xefcafe);
-
- // (public) Constructor
- function BigInteger(a,b,c) {
- if(a != null)
- if("number" == typeof a) this.fromNumber(a,b,c);
- else if(b == null && "string" != typeof a) this.fromString(a,256);
- else this.fromString(a,b);
- }
-
- // return new, unset BigInteger
- function nbi() { return new BigInteger(null); }
-
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
-
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- function am1(i,x,w,j,c,n) {
- while(--n >= 0) {
- var v = x*this[i++]+w[j]+c;
- c = Math.floor(v/0x4000000);
- w[j++] = v&0x3ffffff;
- }
- return c;
- }
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- function am2(i,x,w,j,c,n) {
- var xl = x&0x7fff, xh = x>>15;
- while(--n >= 0) {
- var l = this[i]&0x7fff;
- var h = this[i++]>>15;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
- c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
- w[j++] = l&0x3fffffff;
- }
- return c;
- }
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- function am3(i,x,w,j,c,n) {
- var xl = x&0x3fff, xh = x>>14;
- while(--n >= 0) {
- var l = this[i]&0x3fff;
- var h = this[i++]>>14;
- var m = xh*l+h*xl;
- l = xl*l+((m&0x3fff)<<14)+w[j]+c;
- c = (l>>28)+(m>>14)+xh*h;
- w[j++] = l&0xfffffff;
- }
- return c;
- }
- var inBrowser = typeof navigator !== "undefined";
- if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- BigInteger.prototype.am = am2;
- dbits = 30;
- }
- else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {
- BigInteger.prototype.am = am1;
- dbits = 26;
- }
- else { // Mozilla/Netscape seems to prefer am3
- BigInteger.prototype.am = am3;
- dbits = 28;
- }
-
- BigInteger.prototype.DB = dbits;
- BigInteger.prototype.DM = ((1<<dbits)-1);
- BigInteger.prototype.DV = (1<<dbits);
-
- var BI_FP = 52;
- BigInteger.prototype.FV = Math.pow(2,BI_FP);
- BigInteger.prototype.F1 = BI_FP-dbits;
- BigInteger.prototype.F2 = 2*dbits-BI_FP;
-
- // Digit conversions
- var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
- var BI_RC = new Array();
- var rr,vv;
- rr = "0".charCodeAt(0);
- for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
- rr = "a".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
- rr = "A".charCodeAt(0);
- for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
-
- function int2char(n) { return BI_RM.charAt(n); }
- function intAt(s,i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c==null)?-1:c;
- }
-
- // (protected) copy this to r
- function bnpCopyTo(r) {
- for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
- r.t = this.t;
- r.s = this.s;
- }
-
- // (protected) set from integer value x, -DV <= x < DV
- function bnpFromInt(x) {
- this.t = 1;
- this.s = (x<0)?-1:0;
- if(x > 0) this[0] = x;
- else if(x < -1) this[0] = x+this.DV;
- else this.t = 0;
- }
-
- // return bigint initialized to value
- function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
-
- // (protected) set from string and radix
- function bnpFromString(s,b) {
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 256) k = 8; // byte array
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else { this.fromRadix(s,b); return; }
- this.t = 0;
- this.s = 0;
- var i = s.length, mi = false, sh = 0;
- while(--i >= 0) {
- var x = (k==8)?s[i]&0xff:intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-") mi = true;
- continue;
- }
- mi = false;
- if(sh == 0)
- this[this.t++] = x;
- else if(sh+k > this.DB) {
- this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
- this[this.t++] = (x>>(this.DB-sh));
- }
- else
- this[this.t-1] |= x<<sh;
- sh += k;
- if(sh >= this.DB) sh -= this.DB;
- }
- if(k == 8 && (s[0]&0x80) != 0) {
- this.s = -1;
- if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
- }
- this.clamp();
- if(mi) BigInteger.ZERO.subTo(this,this);
- }
-
- // (protected) clamp off excess high words
- function bnpClamp() {
- var c = this.s&this.DM;
- while(this.t > 0 && this[this.t-1] == c) --this.t;
- }
-
- // (public) return string representation in given radix
- function bnToString(b) {
- if(this.s < 0) return "-"+this.negate().toString(b);
- var k;
- if(b == 16) k = 4;
- else if(b == 8) k = 3;
- else if(b == 2) k = 1;
- else if(b == 32) k = 5;
- else if(b == 4) k = 2;
- else return this.toRadix(b);
- var km = (1<<k)-1, d, m = false, r = "", i = this.t;
- var p = this.DB-(i*this.DB)%k;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
- while(i >= 0) {
- if(p < k) {
- d = (this[i]&((1<<p)-1))<<(k-p);
- d |= this[--i]>>(p+=this.DB-k);
- }
- else {
- d = (this[i]>>(p-=k))&km;
- if(p <= 0) { p += this.DB; --i; }
- }
- if(d > 0) m = true;
- if(m) r += int2char(d);
- }
- }
- return m?r:"0";
- }
-
- // (public) -this
- function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
-
- // (public) |this|
- function bnAbs() { return (this.s<0)?this.negate():this; }
-
- // (public) return + if this > a, - if this < a, 0 if equal
- function bnCompareTo(a) {
- var r = this.s-a.s;
- if(r != 0) return r;
- var i = this.t;
- r = i-a.t;
- if(r != 0) return (this.s<0)?-r:r;
- while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
- return 0;
- }
-
- // returns bit length of the integer x
- function nbits(x) {
- var r = 1, t;
- if((t=x>>>16) != 0) { x = t; r += 16; }
- if((t=x>>8) != 0) { x = t; r += 8; }
- if((t=x>>4) != 0) { x = t; r += 4; }
- if((t=x>>2) != 0) { x = t; r += 2; }
- if((t=x>>1) != 0) { x = t; r += 1; }
- return r;
- }
-
- // (public) return the number of bits in "this"
- function bnBitLength() {
- if(this.t <= 0) return 0;
- return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
- }
-
- // (protected) r = this << n*DB
- function bnpDLShiftTo(n,r) {
- var i;
- for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
- for(i = n-1; i >= 0; --i) r[i] = 0;
- r.t = this.t+n;
- r.s = this.s;
- }
-
- // (protected) r = this >> n*DB
- function bnpDRShiftTo(n,r) {
- for(var i = n; i < this.t; ++i) r[i-n] = this[i];
- r.t = Math.max(this.t-n,0);
- r.s = this.s;
- }
-
- // (protected) r = this << n
- function bnpLShiftTo(n,r) {
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<cbs)-1;
- var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
- for(i = this.t-1; i >= 0; --i) {
- r[i+ds+1] = (this[i]>>cbs)|c;
- c = (this[i]&bm)<<bs;
- }
- for(i = ds-1; i >= 0; --i) r[i] = 0;
- r[ds] = c;
- r.t = this.t+ds+1;
- r.s = this.s;
- r.clamp();
- }
-
- // (protected) r = this >> n
- function bnpRShiftTo(n,r) {
- r.s = this.s;
- var ds = Math.floor(n/this.DB);
- if(ds >= this.t) { r.t = 0; return; }
- var bs = n%this.DB;
- var cbs = this.DB-bs;
- var bm = (1<<bs)-1;
- r[0] = this[ds]>>bs;
- for(var i = ds+1; i < this.t; ++i) {
- r[i-ds-1] |= (this[i]&bm)<<cbs;
- r[i-ds] = this[i]>>bs;
- }
- if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
- r.t = this.t-ds;
- r.clamp();
- }
-
- // (protected) r = this - a
- function bnpSubTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]-a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c -= a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c -= a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c -= a.s;
- }
- r.s = (c<0)?-1:0;
- if(c < -1) r[i++] = this.DV+c;
- else if(c > 0) r[i++] = c;
- r.t = i;
- r.clamp();
- }
-
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- function bnpMultiplyTo(a,r) {
- var x = this.abs(), y = a.abs();
- var i = x.t;
- r.t = i+y.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
- r.s = 0;
- r.clamp();
- if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
- }
-
- // (protected) r = this^2, r != this (HAC 14.16)
- function bnpSquareTo(r) {
- var x = this.abs();
- var i = r.t = 2*x.t;
- while(--i >= 0) r[i] = 0;
- for(i = 0; i < x.t-1; ++i) {
- var c = x.am(i,x[i],r,2*i,0,1);
- if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
- r[i+x.t] -= x.DV;
- r[i+x.t+1] = 1;
- }
- }
- if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
- r.s = 0;
- r.clamp();
- }
-
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- function bnpDivRemTo(m,q,r) {
- var pm = m.abs();
- if(pm.t <= 0) return;
- var pt = this.abs();
- if(pt.t < pm.t) {
- if(q != null) q.fromInt(0);
- if(r != null) this.copyTo(r);
- return;
- }
- if(r == null) r = nbi();
- var y = nbi(), ts = this.s, ms = m.s;
- var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
- if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
- else { pm.copyTo(y); pt.copyTo(r); }
- var ys = y.t;
- var y0 = y[ys-1];
- if(y0 == 0) return;
- var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
- var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
- var i = r.t, j = i-ys, t = (q==null)?nbi():q;
- y.dlShiftTo(j,t);
- if(r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t,r);
- }
- BigInteger.ONE.dlShiftTo(ys,t);
- t.subTo(y,y); // "negative" y so we can replace sub with am later
- while(y.t < ys) y[y.t++] = 0;
- while(--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
- if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
- y.dlShiftTo(j,t);
- r.subTo(t,r);
- while(r[i] < --qd) r.subTo(t,r);
- }
- }
- if(q != null) {
- r.drShiftTo(ys,q);
- if(ts != ms) BigInteger.ZERO.subTo(q,q);
- }
- r.t = ys;
- r.clamp();
- if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
- if(ts < 0) BigInteger.ZERO.subTo(r,r);
- }
-
- // (public) this mod a
- function bnMod(a) {
- var r = nbi();
- this.abs().divRemTo(a,null,r);
- if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
- return r;
- }
-
- // Modular reduction using "classic" algorithm
- function Classic(m) { this.m = m; }
- function cConvert(x) {
- if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
- else return x;
- }
- function cRevert(x) { return x; }
- function cReduce(x) { x.divRemTo(this.m,null,x); }
- function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
- function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- Classic.prototype.convert = cConvert;
- Classic.prototype.revert = cRevert;
- Classic.prototype.reduce = cReduce;
- Classic.prototype.mulTo = cMulTo;
- Classic.prototype.sqrTo = cSqrTo;
-
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- function bnpInvDigit() {
- if(this.t < 1) return 0;
- var x = this[0];
- if((x&1) == 0) return 0;
- var y = x&3; // y == 1/x mod 2^2
- y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
- y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
- y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y>0)?this.DV-y:-y;
- }
-
- // Montgomery reduction
- function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp&0x7fff;
- this.mph = this.mp>>15;
- this.um = (1<<(m.DB-15))-1;
- this.mt2 = 2*m.t;
- }
-
- // xR mod m
- function montConvert(x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t,r);
- r.divRemTo(this.m,null,r);
- if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
- return r;
- }
-
- // x/R mod m
- function montRevert(x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
-
- // x = x/R mod m (HAC 14.32)
- function montReduce(x) {
- while(x.t <= this.mt2) // pad x so am has enough room later
- x[x.t++] = 0;
- for(var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i]&0x7fff;
- var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i+this.m.t;
- x[j] += this.m.am(0,u0,x,i,0,this.m.t);
- // propagate carry
- while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
- }
- x.clamp();
- x.drShiftTo(this.m.t,x);
- if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
- }
-
- // r = "x^2/R mod m"; x != r
- function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- // r = "xy/R mod m"; x,y != r
- function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
- Montgomery.prototype.convert = montConvert;
- Montgomery.prototype.revert = montRevert;
- Montgomery.prototype.reduce = montReduce;
- Montgomery.prototype.mulTo = montMulTo;
- Montgomery.prototype.sqrTo = montSqrTo;
-
- // (protected) true iff this is even
- function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
-
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- function bnpExp(e,z) {
- if(e > 0xffffffff || e < 1) return BigInteger.ONE;
- var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
- g.copyTo(r);
- while(--i >= 0) {
- z.sqrTo(r,r2);
- if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
- else { var t = r; r = r2; r2 = t; }
- }
- return z.revert(r);
- }
-
- // (public) this^e % m, 0 <= e < 2^32
- function bnModPowInt(e,m) {
- var z;
- if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
- return this.exp(e,z);
- }
-
- // protected
- BigInteger.prototype.copyTo = bnpCopyTo;
- BigInteger.prototype.fromInt = bnpFromInt;
- BigInteger.prototype.fromString = bnpFromString;
- BigInteger.prototype.clamp = bnpClamp;
- BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
- BigInteger.prototype.drShiftTo = bnpDRShiftTo;
- BigInteger.prototype.lShiftTo = bnpLShiftTo;
- BigInteger.prototype.rShiftTo = bnpRShiftTo;
- BigInteger.prototype.subTo = bnpSubTo;
- BigInteger.prototype.multiplyTo = bnpMultiplyTo;
- BigInteger.prototype.squareTo = bnpSquareTo;
- BigInteger.prototype.divRemTo = bnpDivRemTo;
- BigInteger.prototype.invDigit = bnpInvDigit;
- BigInteger.prototype.isEven = bnpIsEven;
- BigInteger.prototype.exp = bnpExp;
-
- // public
- BigInteger.prototype.toString = bnToString;
- BigInteger.prototype.negate = bnNegate;
- BigInteger.prototype.abs = bnAbs;
- BigInteger.prototype.compareTo = bnCompareTo;
- BigInteger.prototype.bitLength = bnBitLength;
- BigInteger.prototype.mod = bnMod;
- BigInteger.prototype.modPowInt = bnModPowInt;
-
- // "constants"
- BigInteger.ZERO = nbv(0);
- BigInteger.ONE = nbv(1);
-
- // Copyright (c) 2005-2009 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
-
- // Extended JavaScript BN functions, required for RSA private ops.
-
- // Version 1.1: new BigInteger("0", 10) returns "proper" zero
- // Version 1.2: square() API, isProbablePrime fix
-
- // (public)
- function bnClone() { var r = nbi(); this.copyTo(r); return r; }
-
- // (public) return value as integer
- function bnIntValue() {
- if(this.s < 0) {
- if(this.t == 1) return this[0]-this.DV;
- else if(this.t == 0) return -1;
- }
- else if(this.t == 1) return this[0];
- else if(this.t == 0) return 0;
- // assumes 16 < DB < 32
- return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
- }
-
- // (public) return value as byte
- function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }
-
- // (public) return value as short (assumes DB>=16)
- function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
-
- // (protected) return x s.t. r^x < DV
- function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
-
- // (public) 0 if this == 0, 1 if this > 0
- function bnSigNum() {
- if(this.s < 0) return -1;
- else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
- else return 1;
- }
-
- // (protected) convert to radix string
- function bnpToRadix(b) {
- if(b == null) b = 10;
- if(this.signum() == 0 || b < 2 || b > 36) return "0";
- var cs = this.chunkSize(b);
- var a = Math.pow(b,cs);
- var d = nbv(a), y = nbi(), z = nbi(), r = "";
- this.divRemTo(d,y,z);
- while(y.signum() > 0) {
- r = (a+z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d,y,z);
- }
- return z.intValue().toString(b) + r;
- }
-
- // (protected) convert from radix string
- function bnpFromRadix(s,b) {
- this.fromInt(0);
- if(b == null) b = 10;
- var cs = this.chunkSize(b);
- var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
- for(var i = 0; i < s.length; ++i) {
- var x = intAt(s,i);
- if(x < 0) {
- if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
- continue;
- }
- w = b*w+x;
- if(++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w,0);
- j = 0;
- w = 0;
- }
- }
- if(j > 0) {
- this.dMultiply(Math.pow(b,j));
- this.dAddOffset(w,0);
- }
- if(mi) BigInteger.ZERO.subTo(this,this);
- }
-
- // (protected) alternate constructor
- function bnpFromNumber(a,b,c) {
- if("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if(a < 2) this.fromInt(1);
- else {
- this.fromNumber(a,c);
- if(!this.testBit(a-1)) // force MSB set
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
- if(this.isEven()) this.dAddOffset(1,0); // force odd
- while(!this.isProbablePrime(b)) {
- this.dAddOffset(2,0);
- if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
- }
- }
- }
- else {
- // new BigInteger(int,RNG)
- var x = new Array(), t = a&7;
- x.length = (a>>3)+1;
- b.nextBytes(x);
- if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
- this.fromString(x,256);
- }
- }
-
- // (public) convert to bigendian byte array
- function bnToByteArray() {
- var i = this.t, r = new Array();
- r[0] = this.s;
- var p = this.DB-(i*this.DB)%8, d, k = 0;
- if(i-- > 0) {
- if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
- r[k++] = d|(this.s<<(this.DB-p));
- while(i >= 0) {
- if(p < 8) {
- d = (this[i]&((1<<p)-1))<<(8-p);
- d |= this[--i]>>(p+=this.DB-8);
- }
- else {
- d = (this[i]>>(p-=8))&0xff;
- if(p <= 0) { p += this.DB; --i; }
- }
- if((d&0x80) != 0) d |= -256;
- if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
- if(k > 0 || d != this.s) r[k++] = d;
- }
- }
- return r;
- }
-
- function bnEquals(a) { return(this.compareTo(a)==0); }
- function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
- function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
-
- // (protected) r = this op a (bitwise)
- function bnpBitwiseTo(a,op,r) {
- var i, f, m = Math.min(a.t,this.t);
- for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
- if(a.t < this.t) {
- f = a.s&this.DM;
- for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
- r.t = this.t;
- }
- else {
- f = this.s&this.DM;
- for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
- r.t = a.t;
- }
- r.s = op(this.s,a.s);
- r.clamp();
- }
-
- // (public) this & a
- function op_and(x,y) { return x&y; }
- function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
-
- // (public) this | a
- function op_or(x,y) { return x|y; }
- function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
-
- // (public) this ^ a
- function op_xor(x,y) { return x^y; }
- function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
-
- // (public) this & ~a
- function op_andnot(x,y) { return x&~y; }
- function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
-
- // (public) ~this
- function bnNot() {
- var r = nbi();
- for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
- r.t = this.t;
- r.s = ~this.s;
- return r;
- }
-
- // (public) this << n
- function bnShiftLeft(n) {
- var r = nbi();
- if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
- return r;
- }
-
- // (public) this >> n
- function bnShiftRight(n) {
- var r = nbi();
- if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
- return r;
- }
-
- // return index of lowest 1-bit in x, x < 2^31
- function lbit(x) {
- if(x == 0) return -1;
- var r = 0;
- if((x&0xffff) == 0) { x >>= 16; r += 16; }
- if((x&0xff) == 0) { x >>= 8; r += 8; }
- if((x&0xf) == 0) { x >>= 4; r += 4; }
- if((x&3) == 0) { x >>= 2; r += 2; }
- if((x&1) == 0) ++r;
- return r;
- }
-
- // (public) returns index of lowest 1-bit (or -1 if none)
- function bnGetLowestSetBit() {
- for(var i = 0; i < this.t; ++i)
- if(this[i] != 0) return i*this.DB+lbit(this[i]);
- if(this.s < 0) return this.t*this.DB;
- return -1;
- }
-
- // return number of 1 bits in x
- function cbit(x) {
- var r = 0;
- while(x != 0) { x &= x-1; ++r; }
- return r;
- }
-
- // (public) return number of set bits
- function bnBitCount() {
- var r = 0, x = this.s&this.DM;
- for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
- return r;
- }
-
- // (public) true iff nth bit is set
- function bnTestBit(n) {
- var j = Math.floor(n/this.DB);
- if(j >= this.t) return(this.s!=0);
- return((this[j]&(1<<(n%this.DB)))!=0);
- }
-
- // (protected) this op (1<<n)
- function bnpChangeBit(n,op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this.bitwiseTo(r,op,r);
- return r;
- }
-
- // (public) this | (1<<n)
- function bnSetBit(n) { return this.changeBit(n,op_or); }
-
- // (public) this & ~(1<<n)
- function bnClearBit(n) { return this.changeBit(n,op_andnot); }
-
- // (public) this ^ (1<<n)
- function bnFlipBit(n) { return this.changeBit(n,op_xor); }
-
- // (protected) r = this + a
- function bnpAddTo(a,r) {
- var i = 0, c = 0, m = Math.min(a.t,this.t);
- while(i < m) {
- c += this[i]+a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- if(a.t < this.t) {
- c += a.s;
- while(i < this.t) {
- c += this[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while(i < a.t) {
- c += a[i];
- r[i++] = c&this.DM;
- c >>= this.DB;
- }
- c += a.s;
- }
- r.s = (c<0)?-1:0;
- if(c > 0) r[i++] = c;
- else if(c < -1) r[i++] = this.DV+c;
- r.t = i;
- r.clamp();
- }
-
- // (public) this + a
- function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
-
- // (public) this - a
- function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
-
- // (public) this * a
- function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
-
- // (public) this^2
- function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
-
- // (public) this / a
- function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
-
- // (public) this % a
- function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
-
- // (public) [this/a,this%a]
- function bnDivideAndRemainder(a) {
- var q = nbi(), r = nbi();
- this.divRemTo(a,q,r);
- return new Array(q,r);
- }
-
- // (protected) this *= n, this >= 0, 1 < n < DV
- function bnpDMultiply(n) {
- this[this.t] = this.am(0,n-1,this,0,0,this.t);
- ++this.t;
- this.clamp();
- }
-
- // (protected) this += n << w words, this >= 0
- function bnpDAddOffset(n,w) {
- if(n == 0) return;
- while(this.t <= w) this[this.t++] = 0;
- this[w] += n;
- while(this[w] >= this.DV) {
- this[w] -= this.DV;
- if(++w >= this.t) this[this.t++] = 0;
- ++this[w];
- }
- }
-
- // A "null" reducer
- function NullExp() {}
- function nNop(x) { return x; }
- function nMulTo(x,y,r) { x.multiplyTo(y,r); }
- function nSqrTo(x,r) { x.squareTo(r); }
-
- NullExp.prototype.convert = nNop;
- NullExp.prototype.revert = nNop;
- NullExp.prototype.mulTo = nMulTo;
- NullExp.prototype.sqrTo = nSqrTo;
-
- // (public) this^e
- function bnPow(e) { return this.exp(e,new NullExp()); }
-
- // (protected) r = lower n words of "this * a", a.t <= n
- // "this" should be the larger one if appropriate.
- function bnpMultiplyLowerTo(a,n,r) {
- var i = Math.min(this.t+a.t,n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while(i > 0) r[--i] = 0;
- var j;
- for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
- for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
- r.clamp();
- }
-
- // (protected) r = "this * a" without lower n words, n > 0
- // "this" should be the larger one if appropriate.
- function bnpMultiplyUpperTo(a,n,r) {
- --n;
- var i = r.t = this.t+a.t-n;
- r.s = 0; // assumes a,this >= 0
- while(--i >= 0) r[i] = 0;
- for(i = Math.max(n-this.t,0); i < a.t; ++i)
- r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
- r.clamp();
- r.drShiftTo(1,r);
- }
-
- // Barrett modular reduction
- function Barrett(m) {
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
- this.mu = this.r2.divide(m);
- this.m = m;
- }
-
- function barrettConvert(x) {
- if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
- else if(x.compareTo(this.m) < 0) return x;
- else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
- }
-
- function barrettRevert(x) { return x; }
-
- // x = x mod m (HAC 14.42)
- function barrettReduce(x) {
- x.drShiftTo(this.m.t-1,this.r2);
- if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
- this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
- this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
- while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
- x.subTo(this.r2,x);
- while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
- }
-
- // r = x^2 mod m; x != r
- function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
-
- // r = x*y mod m; x,y != r
- function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
-
- Barrett.prototype.convert = barrettConvert;
- Barrett.prototype.revert = barrettRevert;
- Barrett.prototype.reduce = barrettReduce;
- Barrett.prototype.mulTo = barrettMulTo;
- Barrett.prototype.sqrTo = barrettSqrTo;
-
- // (public) this^e % m (HAC 14.85)
- function bnModPow(e,m) {
- var i = e.bitLength(), k, r = nbv(1), z;
- if(i <= 0) return r;
- else if(i < 18) k = 1;
- else if(i < 48) k = 3;
- else if(i < 144) k = 4;
- else if(i < 768) k = 5;
- else k = 6;
- if(i < 8)
- z = new Classic(m);
- else if(m.isEven())
- z = new Barrett(m);
- else
- z = new Montgomery(m);
-
- // precomputation
- var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
- g[1] = z.convert(this);
- if(k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1],g2);
- while(n <= km) {
- g[n] = nbi();
- z.mulTo(g2,g[n-2],g[n]);
- n += 2;
- }
- }
-
- var j = e.t-1, w, is1 = true, r2 = nbi(), t;
- i = nbits(e[j])-1;
- while(j >= 0) {
- if(i >= k1) w = (e[j]>>(i-k1))&km;
- else {
- w = (e[j]&((1<<(i+1))-1))<<(k1-i);
- if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
- }
-
- n = k;
- while((w&1) == 0) { w >>= 1; --n; }
- if((i -= n) < 0) { i += this.DB; --j; }
- if(is1) { // ret == 1, don't bother squaring or multiplying it
- g[w].copyTo(r);
- is1 = false;
- }
- else {
- while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
- if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
- z.mulTo(r2,g[w],r);
- }
-
- while(j >= 0 && (e[j]&(1<<i)) == 0) {
- z.sqrTo(r,r2); t = r; r = r2; r2 = t;
- if(--i < 0) { i = this.DB-1; --j; }
- }
- }
- return z.revert(r);
- }
-
- // (public) gcd(this,a) (HAC 14.54)
- function bnGCD(a) {
- var x = (this.s<0)?this.negate():this.clone();
- var y = (a.s<0)?a.negate():a.clone();
- if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
- var i = x.getLowestSetBit(), g = y.getLowestSetBit();
- if(g < 0) return x;
- if(i < g) g = i;
- if(g > 0) {
- x.rShiftTo(g,x);
- y.rShiftTo(g,y);
- }
- while(x.signum() > 0) {
- if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
- if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
- if(x.compareTo(y) >= 0) {
- x.subTo(y,x);
- x.rShiftTo(1,x);
- }
- else {
- y.subTo(x,y);
- y.rShiftTo(1,y);
- }
- }
- if(g > 0) y.lShiftTo(g,y);
- return y;
- }
-
- // (protected) this % n, n < 2^26
- function bnpModInt(n) {
- if(n <= 0) return 0;
- var d = this.DV%n, r = (this.s<0)?n-1:0;
- if(this.t > 0)
- if(d == 0) r = this[0]%n;
- else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
- return r;
- }
-
- // (public) 1/this % m (HAC 14.61)
- function bnModInverse(m) {
- var ac = m.isEven();
- if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
- var u = m.clone(), v = this.clone();
- var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
- while(u.signum() != 0) {
- while(u.isEven()) {
- u.rShiftTo(1,u);
- if(ac) {
- if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
- a.rShiftTo(1,a);
- }
- else if(!b.isEven()) b.subTo(m,b);
- b.rShiftTo(1,b);
- }
- while(v.isEven()) {
- v.rShiftTo(1,v);
- if(ac) {
- if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
- c.rShiftTo(1,c);
- }
- else if(!d.isEven()) d.subTo(m,d);
- d.rShiftTo(1,d);
- }
- if(u.compareTo(v) >= 0) {
- u.subTo(v,u);
- if(ac) a.subTo(c,a);
- b.subTo(d,b);
- }
- else {
- v.subTo(u,v);
- if(ac) c.subTo(a,c);
- d.subTo(b,d);
- }
- }
- if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
- if(d.compareTo(m) >= 0) return d.subtract(m);
- if(d.signum() < 0) d.addTo(m,d); else return d;
- if(d.signum() < 0) return d.add(m); else return d;
- }
-
- var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
- var lplim = (1<<26)/lowprimes[lowprimes.length-1];
-
- // (public) test primality with certainty >= 1-.5^t
- function bnIsProbablePrime(t) {
- var i, x = this.abs();
- if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
- for(i = 0; i < lowprimes.length; ++i)
- if(x[0] == lowprimes[i]) return true;
- return false;
- }
- if(x.isEven()) return false;
- i = 1;
- while(i < lowprimes.length) {
- var m = lowprimes[i], j = i+1;
- while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
- m = x.modInt(m);
- while(i < j) if(m%lowprimes[i++] == 0) return false;
- }
- return x.millerRabin(t);
- }
-
- // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
- function bnpMillerRabin(t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if(k <= 0) return false;
- var r = n1.shiftRight(k);
- t = (t+1)>>1;
- if(t > lowprimes.length) t = lowprimes.length;
- var a = nbi();
- for(var i = 0; i < t; ++i) {
- //Pick bases at random, instead of starting at 2
- a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
- var y = a.modPow(r,this);
- if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while(j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2,this);
- if(y.compareTo(BigInteger.ONE) == 0) return false;
- }
- if(y.compareTo(n1) != 0) return false;
- }
- }
- return true;
- }
-
- // protected
- BigInteger.prototype.chunkSize = bnpChunkSize;
- BigInteger.prototype.toRadix = bnpToRadix;
- BigInteger.prototype.fromRadix = bnpFromRadix;
- BigInteger.prototype.fromNumber = bnpFromNumber;
- BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
- BigInteger.prototype.changeBit = bnpChangeBit;
- BigInteger.prototype.addTo = bnpAddTo;
- BigInteger.prototype.dMultiply = bnpDMultiply;
- BigInteger.prototype.dAddOffset = bnpDAddOffset;
- BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
- BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
- BigInteger.prototype.modInt = bnpModInt;
- BigInteger.prototype.millerRabin = bnpMillerRabin;
-
- // public
- BigInteger.prototype.clone = bnClone;
- BigInteger.prototype.intValue = bnIntValue;
- BigInteger.prototype.byteValue = bnByteValue;
- BigInteger.prototype.shortValue = bnShortValue;
- BigInteger.prototype.signum = bnSigNum;
- BigInteger.prototype.toByteArray = bnToByteArray;
- BigInteger.prototype.equals = bnEquals;
- BigInteger.prototype.min = bnMin;
- BigInteger.prototype.max = bnMax;
- BigInteger.prototype.and = bnAnd;
- BigInteger.prototype.or = bnOr;
- BigInteger.prototype.xor = bnXor;
- BigInteger.prototype.andNot = bnAndNot;
- BigInteger.prototype.not = bnNot;
- BigInteger.prototype.shiftLeft = bnShiftLeft;
- BigInteger.prototype.shiftRight = bnShiftRight;
- BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
- BigInteger.prototype.bitCount = bnBitCount;
- BigInteger.prototype.testBit = bnTestBit;
- BigInteger.prototype.setBit = bnSetBit;
- BigInteger.prototype.clearBit = bnClearBit;
- BigInteger.prototype.flipBit = bnFlipBit;
- BigInteger.prototype.add = bnAdd;
- BigInteger.prototype.subtract = bnSubtract;
- BigInteger.prototype.multiply = bnMultiply;
- BigInteger.prototype.divide = bnDivide;
- BigInteger.prototype.remainder = bnRemainder;
- BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
- BigInteger.prototype.modPow = bnModPow;
- BigInteger.prototype.modInverse = bnModInverse;
- BigInteger.prototype.pow = bnPow;
- BigInteger.prototype.gcd = bnGCD;
- BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
-
- // JSBN-specific extension
- BigInteger.prototype.square = bnSquare;
-
- // Expose the Barrett function
- BigInteger.prototype.Barrett = Barrett
-
- // BigInteger interfaces not implemented in jsbn:
-
- // BigInteger(int signum, byte[] magnitude)
- // double doubleValue()
- // float floatValue()
- // int hashCode()
- // long longValue()
- // static BigInteger valueOf(long val)
-
- // Random number generator - requires a PRNG backend, e.g. prng4.js
-
- // For best results, put code like
- // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
- // in your main HTML document.
-
- var rng_state;
- var rng_pool;
- var rng_pptr;
-
- // Mix in a 32-bit integer into the pool
- function rng_seed_int(x) {
- rng_pool[rng_pptr++] ^= x & 255;
- rng_pool[rng_pptr++] ^= (x >> 8) & 255;
- rng_pool[rng_pptr++] ^= (x >> 16) & 255;
- rng_pool[rng_pptr++] ^= (x >> 24) & 255;
- if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
- }
-
- // Mix in the current time (w/milliseconds) into the pool
- function rng_seed_time() {
- rng_seed_int(new Date().getTime());
- }
-
- // Initialize the pool with junk if needed.
- if(rng_pool == null) {
- rng_pool = new Array();
- rng_pptr = 0;
- var t;
- if(typeof window !== "undefined" && window.crypto) {
- if (window.crypto.getRandomValues) {
- // Use webcrypto if available
- var ua = new Uint8Array(32);
- window.crypto.getRandomValues(ua);
- for(t = 0; t < 32; ++t)
- rng_pool[rng_pptr++] = ua[t];
- }
- else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {
- // Extract entropy (256 bits) from NS4 RNG if available
- var z = window.crypto.random(32);
- for(t = 0; t < z.length; ++t)
- rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
- }
- }
- while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
- t = Math.floor(65536 * Math.random());
- rng_pool[rng_pptr++] = t >>> 8;
- rng_pool[rng_pptr++] = t & 255;
- }
- rng_pptr = 0;
- rng_seed_time();
- //rng_seed_int(window.screenX);
- //rng_seed_int(window.screenY);
- }
-
- function rng_get_byte() {
- if(rng_state == null) {
- rng_seed_time();
- rng_state = prng_newstate();
- rng_state.init(rng_pool);
- for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
- rng_pool[rng_pptr] = 0;
- rng_pptr = 0;
- //rng_pool = null;
- }
- // TODO: allow reseeding after first request
- return rng_state.next();
- }
-
- function rng_get_bytes(ba) {
- var i;
- for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
- }
-
- function SecureRandom() {}
-
- SecureRandom.prototype.nextBytes = rng_get_bytes;
-
- // prng4.js - uses Arcfour as a PRNG
-
- function Arcfour() {
- this.i = 0;
- this.j = 0;
- this.S = new Array();
- }
-
- // Initialize arcfour context from key, an array of ints, each from [0..255]
- function ARC4init(key) {
- var i, j, t;
- for(i = 0; i < 256; ++i)
- this.S[i] = i;
- j = 0;
- for(i = 0; i < 256; ++i) {
- j = (j + this.S[i] + key[i % key.length]) & 255;
- t = this.S[i];
- this.S[i] = this.S[j];
- this.S[j] = t;
- }
- this.i = 0;
- this.j = 0;
- }
-
- function ARC4next() {
- var t;
- this.i = (this.i + 1) & 255;
- this.j = (this.j + this.S[this.i]) & 255;
- t = this.S[this.i];
- this.S[this.i] = this.S[this.j];
- this.S[this.j] = t;
- return this.S[(t + this.S[this.i]) & 255];
- }
-
- Arcfour.prototype.init = ARC4init;
- Arcfour.prototype.next = ARC4next;
-
- // Plug in your RNG constructor here
- function prng_newstate() {
- return new Arcfour();
- }
-
- // Pool size must be a multiple of 4 and greater than 32.
- // An array of bytes the size of the pool will be passed to init()
- var rng_psize = 256;
-
- BigInteger.SecureRandom = SecureRandom;
- BigInteger.BigInteger = BigInteger;
- if (typeof exports !== 'undefined') {
- exports = module.exports = BigInteger;
- } else {
- this.BigInteger = BigInteger;
- this.SecureRandom = SecureRandom;
- }
-
-}).call(this);
diff --git a/node_modules/jsbn/package.json b/node_modules/jsbn/package.json
deleted file mode 100644
index 7220c19..0000000
--- a/node_modules/jsbn/package.json
+++ /dev/null
@@ -1,21 +0,0 @@
-{
- "name": "jsbn",
- "version": "0.1.1",
- "description": "The jsbn library is a fast, portable implementation of large-number math in pure JavaScript, enabling public-key crypto and other applications on desktop and mobile browsers.",
- "main": "index.js",
- "scripts": {
- "test": "mocha test.js"
- },
- "repository": {
- "type": "git",
- "url": "https://github.com/andyperlitch/jsbn.git"
- },
- "keywords": [
- "biginteger",
- "bignumber",
- "big",
- "integer"
- ],
- "author": "Tom Wu",
- "license": "MIT"
-}