From 726b81b19251674e149ccfbb1abacbd837fc6db0 Mon Sep 17 00:00:00 2001 From: LinuxWizard42 Date: Wed, 12 Oct 2022 23:08:57 +0300 Subject: Removed files that should not have been included in git --- node_modules/jsbn/index.js | 1357 -------------------------------------------- 1 file changed, 1357 deletions(-) delete mode 100644 node_modules/jsbn/index.js (limited to 'node_modules/jsbn/index.js') diff --git a/node_modules/jsbn/index.js b/node_modules/jsbn/index.js deleted file mode 100644 index 973226d..0000000 --- a/node_modules/jsbn/index.js +++ /dev/null @@ -1,1357 +0,0 @@ -(function(){ - - // Copyright (c) 2005 Tom Wu - // All Rights Reserved. - // See "LICENSE" for details. - - // Basic JavaScript BN library - subset useful for RSA encryption. - - // Bits per digit - var dbits; - - // JavaScript engine analysis - var canary = 0xdeadbeefcafe; - var j_lm = ((canary&0xffffff)==0xefcafe); - - // (public) Constructor - function BigInteger(a,b,c) { - if(a != null) - if("number" == typeof a) this.fromNumber(a,b,c); - else if(b == null && "string" != typeof a) this.fromString(a,256); - else this.fromString(a,b); - } - - // return new, unset BigInteger - function nbi() { return new BigInteger(null); } - - // am: Compute w_j += (x*this_i), propagate carries, - // c is initial carry, returns final carry. - // c < 3*dvalue, x < 2*dvalue, this_i < dvalue - // We need to select the fastest one that works in this environment. - - // am1: use a single mult and divide to get the high bits, - // max digit bits should be 26 because - // max internal value = 2*dvalue^2-2*dvalue (< 2^53) - function am1(i,x,w,j,c,n) { - while(--n >= 0) { - var v = x*this[i++]+w[j]+c; - c = Math.floor(v/0x4000000); - w[j++] = v&0x3ffffff; - } - return c; - } - // am2 avoids a big mult-and-extract completely. - // Max digit bits should be <= 30 because we do bitwise ops - // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) - function am2(i,x,w,j,c,n) { - var xl = x&0x7fff, xh = x>>15; - while(--n >= 0) { - var l = this[i]&0x7fff; - var h = this[i++]>>15; - var m = xh*l+h*xl; - l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); - c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); - w[j++] = l&0x3fffffff; - } - return c; - } - // Alternately, set max digit bits to 28 since some - // browsers slow down when dealing with 32-bit numbers. - function am3(i,x,w,j,c,n) { - var xl = x&0x3fff, xh = x>>14; - while(--n >= 0) { - var l = this[i]&0x3fff; - var h = this[i++]>>14; - var m = xh*l+h*xl; - l = xl*l+((m&0x3fff)<<14)+w[j]+c; - c = (l>>28)+(m>>14)+xh*h; - w[j++] = l&0xfffffff; - } - return c; - } - var inBrowser = typeof navigator !== "undefined"; - if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) { - BigInteger.prototype.am = am2; - dbits = 30; - } - else if(inBrowser && j_lm && (navigator.appName != "Netscape")) { - BigInteger.prototype.am = am1; - dbits = 26; - } - else { // Mozilla/Netscape seems to prefer am3 - BigInteger.prototype.am = am3; - dbits = 28; - } - - BigInteger.prototype.DB = dbits; - BigInteger.prototype.DM = ((1<= 0; --i) r[i] = this[i]; - r.t = this.t; - r.s = this.s; - } - - // (protected) set from integer value x, -DV <= x < DV - function bnpFromInt(x) { - this.t = 1; - this.s = (x<0)?-1:0; - if(x > 0) this[0] = x; - else if(x < -1) this[0] = x+this.DV; - else this.t = 0; - } - - // return bigint initialized to value - function nbv(i) { var r = nbi(); r.fromInt(i); return r; } - - // (protected) set from string and radix - function bnpFromString(s,b) { - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 256) k = 8; // byte array - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else { this.fromRadix(s,b); return; } - this.t = 0; - this.s = 0; - var i = s.length, mi = false, sh = 0; - while(--i >= 0) { - var x = (k==8)?s[i]&0xff:intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-") mi = true; - continue; - } - mi = false; - if(sh == 0) - this[this.t++] = x; - else if(sh+k > this.DB) { - this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<>(this.DB-sh)); - } - else - this[this.t-1] |= x<= this.DB) sh -= this.DB; - } - if(k == 8 && (s[0]&0x80) != 0) { - this.s = -1; - if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)< 0 && this[this.t-1] == c) --this.t; - } - - // (public) return string representation in given radix - function bnToString(b) { - if(this.s < 0) return "-"+this.negate().toString(b); - var k; - if(b == 16) k = 4; - else if(b == 8) k = 3; - else if(b == 2) k = 1; - else if(b == 32) k = 5; - else if(b == 4) k = 2; - else return this.toRadix(b); - var km = (1< 0) { - if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } - while(i >= 0) { - if(p < k) { - d = (this[i]&((1<>(p+=this.DB-k); - } - else { - d = (this[i]>>(p-=k))&km; - if(p <= 0) { p += this.DB; --i; } - } - if(d > 0) m = true; - if(m) r += int2char(d); - } - } - return m?r:"0"; - } - - // (public) -this - function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } - - // (public) |this| - function bnAbs() { return (this.s<0)?this.negate():this; } - - // (public) return + if this > a, - if this < a, 0 if equal - function bnCompareTo(a) { - var r = this.s-a.s; - if(r != 0) return r; - var i = this.t; - r = i-a.t; - if(r != 0) return (this.s<0)?-r:r; - while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; - return 0; - } - - // returns bit length of the integer x - function nbits(x) { - var r = 1, t; - if((t=x>>>16) != 0) { x = t; r += 16; } - if((t=x>>8) != 0) { x = t; r += 8; } - if((t=x>>4) != 0) { x = t; r += 4; } - if((t=x>>2) != 0) { x = t; r += 2; } - if((t=x>>1) != 0) { x = t; r += 1; } - return r; - } - - // (public) return the number of bits in "this" - function bnBitLength() { - if(this.t <= 0) return 0; - return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); - } - - // (protected) r = this << n*DB - function bnpDLShiftTo(n,r) { - var i; - for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; - for(i = n-1; i >= 0; --i) r[i] = 0; - r.t = this.t+n; - r.s = this.s; - } - - // (protected) r = this >> n*DB - function bnpDRShiftTo(n,r) { - for(var i = n; i < this.t; ++i) r[i-n] = this[i]; - r.t = Math.max(this.t-n,0); - r.s = this.s; - } - - // (protected) r = this << n - function bnpLShiftTo(n,r) { - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<= 0; --i) { - r[i+ds+1] = (this[i]>>cbs)|c; - c = (this[i]&bm)<= 0; --i) r[i] = 0; - r[ds] = c; - r.t = this.t+ds+1; - r.s = this.s; - r.clamp(); - } - - // (protected) r = this >> n - function bnpRShiftTo(n,r) { - r.s = this.s; - var ds = Math.floor(n/this.DB); - if(ds >= this.t) { r.t = 0; return; } - var bs = n%this.DB; - var cbs = this.DB-bs; - var bm = (1<>bs; - for(var i = ds+1; i < this.t; ++i) { - r[i-ds-1] |= (this[i]&bm)<>bs; - } - if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB; - } - if(a.t < this.t) { - c -= a.s; - while(i < this.t) { - c += this[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c -= a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c -= a.s; - } - r.s = (c<0)?-1:0; - if(c < -1) r[i++] = this.DV+c; - else if(c > 0) r[i++] = c; - r.t = i; - r.clamp(); - } - - // (protected) r = this * a, r != this,a (HAC 14.12) - // "this" should be the larger one if appropriate. - function bnpMultiplyTo(a,r) { - var x = this.abs(), y = a.abs(); - var i = x.t; - r.t = i+y.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); - r.s = 0; - r.clamp(); - if(this.s != a.s) BigInteger.ZERO.subTo(r,r); - } - - // (protected) r = this^2, r != this (HAC 14.16) - function bnpSquareTo(r) { - var x = this.abs(); - var i = r.t = 2*x.t; - while(--i >= 0) r[i] = 0; - for(i = 0; i < x.t-1; ++i) { - var c = x.am(i,x[i],r,2*i,0,1); - if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { - r[i+x.t] -= x.DV; - r[i+x.t+1] = 1; - } - } - if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); - r.s = 0; - r.clamp(); - } - - // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) - // r != q, this != m. q or r may be null. - function bnpDivRemTo(m,q,r) { - var pm = m.abs(); - if(pm.t <= 0) return; - var pt = this.abs(); - if(pt.t < pm.t) { - if(q != null) q.fromInt(0); - if(r != null) this.copyTo(r); - return; - } - if(r == null) r = nbi(); - var y = nbi(), ts = this.s, ms = m.s; - var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus - if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } - else { pm.copyTo(y); pt.copyTo(r); } - var ys = y.t; - var y0 = y[ys-1]; - if(y0 == 0) return; - var yt = y0*(1<1)?y[ys-2]>>this.F2:0); - var d1 = this.FV/yt, d2 = (1<= 0) { - r[r.t++] = 1; - r.subTo(t,r); - } - BigInteger.ONE.dlShiftTo(ys,t); - t.subTo(y,y); // "negative" y so we can replace sub with am later - while(y.t < ys) y[y.t++] = 0; - while(--j >= 0) { - // Estimate quotient digit - var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); - if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out - y.dlShiftTo(j,t); - r.subTo(t,r); - while(r[i] < --qd) r.subTo(t,r); - } - } - if(q != null) { - r.drShiftTo(ys,q); - if(ts != ms) BigInteger.ZERO.subTo(q,q); - } - r.t = ys; - r.clamp(); - if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder - if(ts < 0) BigInteger.ZERO.subTo(r,r); - } - - // (public) this mod a - function bnMod(a) { - var r = nbi(); - this.abs().divRemTo(a,null,r); - if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); - return r; - } - - // Modular reduction using "classic" algorithm - function Classic(m) { this.m = m; } - function cConvert(x) { - if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); - else return x; - } - function cRevert(x) { return x; } - function cReduce(x) { x.divRemTo(this.m,null,x); } - function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - - Classic.prototype.convert = cConvert; - Classic.prototype.revert = cRevert; - Classic.prototype.reduce = cReduce; - Classic.prototype.mulTo = cMulTo; - Classic.prototype.sqrTo = cSqrTo; - - // (protected) return "-1/this % 2^DB"; useful for Mont. reduction - // justification: - // xy == 1 (mod m) - // xy = 1+km - // xy(2-xy) = (1+km)(1-km) - // x[y(2-xy)] = 1-k^2m^2 - // x[y(2-xy)] == 1 (mod m^2) - // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 - // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. - // JS multiply "overflows" differently from C/C++, so care is needed here. - function bnpInvDigit() { - if(this.t < 1) return 0; - var x = this[0]; - if((x&1) == 0) return 0; - var y = x&3; // y == 1/x mod 2^2 - y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 - y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 - y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 - // last step - calculate inverse mod DV directly; - // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints - y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits - // we really want the negative inverse, and -DV < y < DV - return (y>0)?this.DV-y:-y; - } - - // Montgomery reduction - function Montgomery(m) { - this.m = m; - this.mp = m.invDigit(); - this.mpl = this.mp&0x7fff; - this.mph = this.mp>>15; - this.um = (1<<(m.DB-15))-1; - this.mt2 = 2*m.t; - } - - // xR mod m - function montConvert(x) { - var r = nbi(); - x.abs().dlShiftTo(this.m.t,r); - r.divRemTo(this.m,null,r); - if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); - return r; - } - - // x/R mod m - function montRevert(x) { - var r = nbi(); - x.copyTo(r); - this.reduce(r); - return r; - } - - // x = x/R mod m (HAC 14.32) - function montReduce(x) { - while(x.t <= this.mt2) // pad x so am has enough room later - x[x.t++] = 0; - for(var i = 0; i < this.m.t; ++i) { - // faster way of calculating u0 = x[i]*mp mod DV - var j = x[i]&0x7fff; - var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; - // use am to combine the multiply-shift-add into one call - j = i+this.m.t; - x[j] += this.m.am(0,u0,x,i,0,this.m.t); - // propagate carry - while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } - } - x.clamp(); - x.drShiftTo(this.m.t,x); - if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); - } - - // r = "x^2/R mod m"; x != r - function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - - // r = "xy/R mod m"; x,y != r - function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - - Montgomery.prototype.convert = montConvert; - Montgomery.prototype.revert = montRevert; - Montgomery.prototype.reduce = montReduce; - Montgomery.prototype.mulTo = montMulTo; - Montgomery.prototype.sqrTo = montSqrTo; - - // (protected) true iff this is even - function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } - - // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) - function bnpExp(e,z) { - if(e > 0xffffffff || e < 1) return BigInteger.ONE; - var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; - g.copyTo(r); - while(--i >= 0) { - z.sqrTo(r,r2); - if((e&(1< 0) z.mulTo(r2,g,r); - else { var t = r; r = r2; r2 = t; } - } - return z.revert(r); - } - - // (public) this^e % m, 0 <= e < 2^32 - function bnModPowInt(e,m) { - var z; - if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); - return this.exp(e,z); - } - - // protected - BigInteger.prototype.copyTo = bnpCopyTo; - BigInteger.prototype.fromInt = bnpFromInt; - BigInteger.prototype.fromString = bnpFromString; - BigInteger.prototype.clamp = bnpClamp; - BigInteger.prototype.dlShiftTo = bnpDLShiftTo; - BigInteger.prototype.drShiftTo = bnpDRShiftTo; - BigInteger.prototype.lShiftTo = bnpLShiftTo; - BigInteger.prototype.rShiftTo = bnpRShiftTo; - BigInteger.prototype.subTo = bnpSubTo; - BigInteger.prototype.multiplyTo = bnpMultiplyTo; - BigInteger.prototype.squareTo = bnpSquareTo; - BigInteger.prototype.divRemTo = bnpDivRemTo; - BigInteger.prototype.invDigit = bnpInvDigit; - BigInteger.prototype.isEven = bnpIsEven; - BigInteger.prototype.exp = bnpExp; - - // public - BigInteger.prototype.toString = bnToString; - BigInteger.prototype.negate = bnNegate; - BigInteger.prototype.abs = bnAbs; - BigInteger.prototype.compareTo = bnCompareTo; - BigInteger.prototype.bitLength = bnBitLength; - BigInteger.prototype.mod = bnMod; - BigInteger.prototype.modPowInt = bnModPowInt; - - // "constants" - BigInteger.ZERO = nbv(0); - BigInteger.ONE = nbv(1); - - // Copyright (c) 2005-2009 Tom Wu - // All Rights Reserved. - // See "LICENSE" for details. - - // Extended JavaScript BN functions, required for RSA private ops. - - // Version 1.1: new BigInteger("0", 10) returns "proper" zero - // Version 1.2: square() API, isProbablePrime fix - - // (public) - function bnClone() { var r = nbi(); this.copyTo(r); return r; } - - // (public) return value as integer - function bnIntValue() { - if(this.s < 0) { - if(this.t == 1) return this[0]-this.DV; - else if(this.t == 0) return -1; - } - else if(this.t == 1) return this[0]; - else if(this.t == 0) return 0; - // assumes 16 < DB < 32 - return ((this[1]&((1<<(32-this.DB))-1))<>24; } - - // (public) return value as short (assumes DB>=16) - function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } - - // (protected) return x s.t. r^x < DV - function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } - - // (public) 0 if this == 0, 1 if this > 0 - function bnSigNum() { - if(this.s < 0) return -1; - else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; - else return 1; - } - - // (protected) convert to radix string - function bnpToRadix(b) { - if(b == null) b = 10; - if(this.signum() == 0 || b < 2 || b > 36) return "0"; - var cs = this.chunkSize(b); - var a = Math.pow(b,cs); - var d = nbv(a), y = nbi(), z = nbi(), r = ""; - this.divRemTo(d,y,z); - while(y.signum() > 0) { - r = (a+z.intValue()).toString(b).substr(1) + r; - y.divRemTo(d,y,z); - } - return z.intValue().toString(b) + r; - } - - // (protected) convert from radix string - function bnpFromRadix(s,b) { - this.fromInt(0); - if(b == null) b = 10; - var cs = this.chunkSize(b); - var d = Math.pow(b,cs), mi = false, j = 0, w = 0; - for(var i = 0; i < s.length; ++i) { - var x = intAt(s,i); - if(x < 0) { - if(s.charAt(i) == "-" && this.signum() == 0) mi = true; - continue; - } - w = b*w+x; - if(++j >= cs) { - this.dMultiply(d); - this.dAddOffset(w,0); - j = 0; - w = 0; - } - } - if(j > 0) { - this.dMultiply(Math.pow(b,j)); - this.dAddOffset(w,0); - } - if(mi) BigInteger.ZERO.subTo(this,this); - } - - // (protected) alternate constructor - function bnpFromNumber(a,b,c) { - if("number" == typeof b) { - // new BigInteger(int,int,RNG) - if(a < 2) this.fromInt(1); - else { - this.fromNumber(a,c); - if(!this.testBit(a-1)) // force MSB set - this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); - if(this.isEven()) this.dAddOffset(1,0); // force odd - while(!this.isProbablePrime(b)) { - this.dAddOffset(2,0); - if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); - } - } - } - else { - // new BigInteger(int,RNG) - var x = new Array(), t = a&7; - x.length = (a>>3)+1; - b.nextBytes(x); - if(t > 0) x[0] &= ((1< 0) { - if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) - r[k++] = d|(this.s<<(this.DB-p)); - while(i >= 0) { - if(p < 8) { - d = (this[i]&((1<>(p+=this.DB-8); - } - else { - d = (this[i]>>(p-=8))&0xff; - if(p <= 0) { p += this.DB; --i; } - } - if((d&0x80) != 0) d |= -256; - if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; - if(k > 0 || d != this.s) r[k++] = d; - } - } - return r; - } - - function bnEquals(a) { return(this.compareTo(a)==0); } - function bnMin(a) { return(this.compareTo(a)<0)?this:a; } - function bnMax(a) { return(this.compareTo(a)>0)?this:a; } - - // (protected) r = this op a (bitwise) - function bnpBitwiseTo(a,op,r) { - var i, f, m = Math.min(a.t,this.t); - for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); - if(a.t < this.t) { - f = a.s&this.DM; - for(i = m; i < this.t; ++i) r[i] = op(this[i],f); - r.t = this.t; - } - else { - f = this.s&this.DM; - for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); - r.t = a.t; - } - r.s = op(this.s,a.s); - r.clamp(); - } - - // (public) this & a - function op_and(x,y) { return x&y; } - function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } - - // (public) this | a - function op_or(x,y) { return x|y; } - function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } - - // (public) this ^ a - function op_xor(x,y) { return x^y; } - function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } - - // (public) this & ~a - function op_andnot(x,y) { return x&~y; } - function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } - - // (public) ~this - function bnNot() { - var r = nbi(); - for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; - r.t = this.t; - r.s = ~this.s; - return r; - } - - // (public) this << n - function bnShiftLeft(n) { - var r = nbi(); - if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); - return r; - } - - // (public) this >> n - function bnShiftRight(n) { - var r = nbi(); - if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); - return r; - } - - // return index of lowest 1-bit in x, x < 2^31 - function lbit(x) { - if(x == 0) return -1; - var r = 0; - if((x&0xffff) == 0) { x >>= 16; r += 16; } - if((x&0xff) == 0) { x >>= 8; r += 8; } - if((x&0xf) == 0) { x >>= 4; r += 4; } - if((x&3) == 0) { x >>= 2; r += 2; } - if((x&1) == 0) ++r; - return r; - } - - // (public) returns index of lowest 1-bit (or -1 if none) - function bnGetLowestSetBit() { - for(var i = 0; i < this.t; ++i) - if(this[i] != 0) return i*this.DB+lbit(this[i]); - if(this.s < 0) return this.t*this.DB; - return -1; - } - - // return number of 1 bits in x - function cbit(x) { - var r = 0; - while(x != 0) { x &= x-1; ++r; } - return r; - } - - // (public) return number of set bits - function bnBitCount() { - var r = 0, x = this.s&this.DM; - for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); - return r; - } - - // (public) true iff nth bit is set - function bnTestBit(n) { - var j = Math.floor(n/this.DB); - if(j >= this.t) return(this.s!=0); - return((this[j]&(1<<(n%this.DB)))!=0); - } - - // (protected) this op (1<>= this.DB; - } - if(a.t < this.t) { - c += a.s; - while(i < this.t) { - c += this[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += this.s; - } - else { - c += this.s; - while(i < a.t) { - c += a[i]; - r[i++] = c&this.DM; - c >>= this.DB; - } - c += a.s; - } - r.s = (c<0)?-1:0; - if(c > 0) r[i++] = c; - else if(c < -1) r[i++] = this.DV+c; - r.t = i; - r.clamp(); - } - - // (public) this + a - function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } - - // (public) this - a - function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } - - // (public) this * a - function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } - - // (public) this^2 - function bnSquare() { var r = nbi(); this.squareTo(r); return r; } - - // (public) this / a - function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } - - // (public) this % a - function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } - - // (public) [this/a,this%a] - function bnDivideAndRemainder(a) { - var q = nbi(), r = nbi(); - this.divRemTo(a,q,r); - return new Array(q,r); - } - - // (protected) this *= n, this >= 0, 1 < n < DV - function bnpDMultiply(n) { - this[this.t] = this.am(0,n-1,this,0,0,this.t); - ++this.t; - this.clamp(); - } - - // (protected) this += n << w words, this >= 0 - function bnpDAddOffset(n,w) { - if(n == 0) return; - while(this.t <= w) this[this.t++] = 0; - this[w] += n; - while(this[w] >= this.DV) { - this[w] -= this.DV; - if(++w >= this.t) this[this.t++] = 0; - ++this[w]; - } - } - - // A "null" reducer - function NullExp() {} - function nNop(x) { return x; } - function nMulTo(x,y,r) { x.multiplyTo(y,r); } - function nSqrTo(x,r) { x.squareTo(r); } - - NullExp.prototype.convert = nNop; - NullExp.prototype.revert = nNop; - NullExp.prototype.mulTo = nMulTo; - NullExp.prototype.sqrTo = nSqrTo; - - // (public) this^e - function bnPow(e) { return this.exp(e,new NullExp()); } - - // (protected) r = lower n words of "this * a", a.t <= n - // "this" should be the larger one if appropriate. - function bnpMultiplyLowerTo(a,n,r) { - var i = Math.min(this.t+a.t,n); - r.s = 0; // assumes a,this >= 0 - r.t = i; - while(i > 0) r[--i] = 0; - var j; - for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); - for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); - r.clamp(); - } - - // (protected) r = "this * a" without lower n words, n > 0 - // "this" should be the larger one if appropriate. - function bnpMultiplyUpperTo(a,n,r) { - --n; - var i = r.t = this.t+a.t-n; - r.s = 0; // assumes a,this >= 0 - while(--i >= 0) r[i] = 0; - for(i = Math.max(n-this.t,0); i < a.t; ++i) - r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); - r.clamp(); - r.drShiftTo(1,r); - } - - // Barrett modular reduction - function Barrett(m) { - // setup Barrett - this.r2 = nbi(); - this.q3 = nbi(); - BigInteger.ONE.dlShiftTo(2*m.t,this.r2); - this.mu = this.r2.divide(m); - this.m = m; - } - - function barrettConvert(x) { - if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); - else if(x.compareTo(this.m) < 0) return x; - else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } - } - - function barrettRevert(x) { return x; } - - // x = x mod m (HAC 14.42) - function barrettReduce(x) { - x.drShiftTo(this.m.t-1,this.r2); - if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } - this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); - this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); - while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); - x.subTo(this.r2,x); - while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); - } - - // r = x^2 mod m; x != r - function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } - - // r = x*y mod m; x,y != r - function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } - - Barrett.prototype.convert = barrettConvert; - Barrett.prototype.revert = barrettRevert; - Barrett.prototype.reduce = barrettReduce; - Barrett.prototype.mulTo = barrettMulTo; - Barrett.prototype.sqrTo = barrettSqrTo; - - // (public) this^e % m (HAC 14.85) - function bnModPow(e,m) { - var i = e.bitLength(), k, r = nbv(1), z; - if(i <= 0) return r; - else if(i < 18) k = 1; - else if(i < 48) k = 3; - else if(i < 144) k = 4; - else if(i < 768) k = 5; - else k = 6; - if(i < 8) - z = new Classic(m); - else if(m.isEven()) - z = new Barrett(m); - else - z = new Montgomery(m); - - // precomputation - var g = new Array(), n = 3, k1 = k-1, km = (1< 1) { - var g2 = nbi(); - z.sqrTo(g[1],g2); - while(n <= km) { - g[n] = nbi(); - z.mulTo(g2,g[n-2],g[n]); - n += 2; - } - } - - var j = e.t-1, w, is1 = true, r2 = nbi(), t; - i = nbits(e[j])-1; - while(j >= 0) { - if(i >= k1) w = (e[j]>>(i-k1))&km; - else { - w = (e[j]&((1<<(i+1))-1))<<(k1-i); - if(j > 0) w |= e[j-1]>>(this.DB+i-k1); - } - - n = k; - while((w&1) == 0) { w >>= 1; --n; } - if((i -= n) < 0) { i += this.DB; --j; } - if(is1) { // ret == 1, don't bother squaring or multiplying it - g[w].copyTo(r); - is1 = false; - } - else { - while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } - if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } - z.mulTo(r2,g[w],r); - } - - while(j >= 0 && (e[j]&(1< 0) { - x.rShiftTo(g,x); - y.rShiftTo(g,y); - } - while(x.signum() > 0) { - if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); - if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); - if(x.compareTo(y) >= 0) { - x.subTo(y,x); - x.rShiftTo(1,x); - } - else { - y.subTo(x,y); - y.rShiftTo(1,y); - } - } - if(g > 0) y.lShiftTo(g,y); - return y; - } - - // (protected) this % n, n < 2^26 - function bnpModInt(n) { - if(n <= 0) return 0; - var d = this.DV%n, r = (this.s<0)?n-1:0; - if(this.t > 0) - if(d == 0) r = this[0]%n; - else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; - return r; - } - - // (public) 1/this % m (HAC 14.61) - function bnModInverse(m) { - var ac = m.isEven(); - if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; - var u = m.clone(), v = this.clone(); - var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); - while(u.signum() != 0) { - while(u.isEven()) { - u.rShiftTo(1,u); - if(ac) { - if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } - a.rShiftTo(1,a); - } - else if(!b.isEven()) b.subTo(m,b); - b.rShiftTo(1,b); - } - while(v.isEven()) { - v.rShiftTo(1,v); - if(ac) { - if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } - c.rShiftTo(1,c); - } - else if(!d.isEven()) d.subTo(m,d); - d.rShiftTo(1,d); - } - if(u.compareTo(v) >= 0) { - u.subTo(v,u); - if(ac) a.subTo(c,a); - b.subTo(d,b); - } - else { - v.subTo(u,v); - if(ac) c.subTo(a,c); - d.subTo(b,d); - } - } - if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; - if(d.compareTo(m) >= 0) return d.subtract(m); - if(d.signum() < 0) d.addTo(m,d); else return d; - if(d.signum() < 0) return d.add(m); else return d; - } - - var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; - var lplim = (1<<26)/lowprimes[lowprimes.length-1]; - - // (public) test primality with certainty >= 1-.5^t - function bnIsProbablePrime(t) { - var i, x = this.abs(); - if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { - for(i = 0; i < lowprimes.length; ++i) - if(x[0] == lowprimes[i]) return true; - return false; - } - if(x.isEven()) return false; - i = 1; - while(i < lowprimes.length) { - var m = lowprimes[i], j = i+1; - while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; - m = x.modInt(m); - while(i < j) if(m%lowprimes[i++] == 0) return false; - } - return x.millerRabin(t); - } - - // (protected) true if probably prime (HAC 4.24, Miller-Rabin) - function bnpMillerRabin(t) { - var n1 = this.subtract(BigInteger.ONE); - var k = n1.getLowestSetBit(); - if(k <= 0) return false; - var r = n1.shiftRight(k); - t = (t+1)>>1; - if(t > lowprimes.length) t = lowprimes.length; - var a = nbi(); - for(var i = 0; i < t; ++i) { - //Pick bases at random, instead of starting at 2 - a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]); - var y = a.modPow(r,this); - if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { - var j = 1; - while(j++ < k && y.compareTo(n1) != 0) { - y = y.modPowInt(2,this); - if(y.compareTo(BigInteger.ONE) == 0) return false; - } - if(y.compareTo(n1) != 0) return false; - } - } - return true; - } - - // protected - BigInteger.prototype.chunkSize = bnpChunkSize; - BigInteger.prototype.toRadix = bnpToRadix; - BigInteger.prototype.fromRadix = bnpFromRadix; - BigInteger.prototype.fromNumber = bnpFromNumber; - BigInteger.prototype.bitwiseTo = bnpBitwiseTo; - BigInteger.prototype.changeBit = bnpChangeBit; - BigInteger.prototype.addTo = bnpAddTo; - BigInteger.prototype.dMultiply = bnpDMultiply; - BigInteger.prototype.dAddOffset = bnpDAddOffset; - BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; - BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; - BigInteger.prototype.modInt = bnpModInt; - BigInteger.prototype.millerRabin = bnpMillerRabin; - - // public - BigInteger.prototype.clone = bnClone; - BigInteger.prototype.intValue = bnIntValue; - BigInteger.prototype.byteValue = bnByteValue; - BigInteger.prototype.shortValue = bnShortValue; - BigInteger.prototype.signum = bnSigNum; - BigInteger.prototype.toByteArray = bnToByteArray; - BigInteger.prototype.equals = bnEquals; - BigInteger.prototype.min = bnMin; - BigInteger.prototype.max = bnMax; - BigInteger.prototype.and = bnAnd; - BigInteger.prototype.or = bnOr; - BigInteger.prototype.xor = bnXor; - BigInteger.prototype.andNot = bnAndNot; - BigInteger.prototype.not = bnNot; - BigInteger.prototype.shiftLeft = bnShiftLeft; - BigInteger.prototype.shiftRight = bnShiftRight; - BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; - BigInteger.prototype.bitCount = bnBitCount; - BigInteger.prototype.testBit = bnTestBit; - BigInteger.prototype.setBit = bnSetBit; - BigInteger.prototype.clearBit = bnClearBit; - BigInteger.prototype.flipBit = bnFlipBit; - BigInteger.prototype.add = bnAdd; - BigInteger.prototype.subtract = bnSubtract; - BigInteger.prototype.multiply = bnMultiply; - BigInteger.prototype.divide = bnDivide; - BigInteger.prototype.remainder = bnRemainder; - BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; - BigInteger.prototype.modPow = bnModPow; - BigInteger.prototype.modInverse = bnModInverse; - BigInteger.prototype.pow = bnPow; - BigInteger.prototype.gcd = bnGCD; - BigInteger.prototype.isProbablePrime = bnIsProbablePrime; - - // JSBN-specific extension - BigInteger.prototype.square = bnSquare; - - // Expose the Barrett function - BigInteger.prototype.Barrett = Barrett - - // BigInteger interfaces not implemented in jsbn: - - // BigInteger(int signum, byte[] magnitude) - // double doubleValue() - // float floatValue() - // int hashCode() - // long longValue() - // static BigInteger valueOf(long val) - - // Random number generator - requires a PRNG backend, e.g. prng4.js - - // For best results, put code like - // - // in your main HTML document. - - var rng_state; - var rng_pool; - var rng_pptr; - - // Mix in a 32-bit integer into the pool - function rng_seed_int(x) { - rng_pool[rng_pptr++] ^= x & 255; - rng_pool[rng_pptr++] ^= (x >> 8) & 255; - rng_pool[rng_pptr++] ^= (x >> 16) & 255; - rng_pool[rng_pptr++] ^= (x >> 24) & 255; - if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; - } - - // Mix in the current time (w/milliseconds) into the pool - function rng_seed_time() { - rng_seed_int(new Date().getTime()); - } - - // Initialize the pool with junk if needed. - if(rng_pool == null) { - rng_pool = new Array(); - rng_pptr = 0; - var t; - if(typeof window !== "undefined" && window.crypto) { - if (window.crypto.getRandomValues) { - // Use webcrypto if available - var ua = new Uint8Array(32); - window.crypto.getRandomValues(ua); - for(t = 0; t < 32; ++t) - rng_pool[rng_pptr++] = ua[t]; - } - else if(navigator.appName == "Netscape" && navigator.appVersion < "5") { - // Extract entropy (256 bits) from NS4 RNG if available - var z = window.crypto.random(32); - for(t = 0; t < z.length; ++t) - rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; - } - } - while(rng_pptr < rng_psize) { // extract some randomness from Math.random() - t = Math.floor(65536 * Math.random()); - rng_pool[rng_pptr++] = t >>> 8; - rng_pool[rng_pptr++] = t & 255; - } - rng_pptr = 0; - rng_seed_time(); - //rng_seed_int(window.screenX); - //rng_seed_int(window.screenY); - } - - function rng_get_byte() { - if(rng_state == null) { - rng_seed_time(); - rng_state = prng_newstate(); - rng_state.init(rng_pool); - for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) - rng_pool[rng_pptr] = 0; - rng_pptr = 0; - //rng_pool = null; - } - // TODO: allow reseeding after first request - return rng_state.next(); - } - - function rng_get_bytes(ba) { - var i; - for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); - } - - function SecureRandom() {} - - SecureRandom.prototype.nextBytes = rng_get_bytes; - - // prng4.js - uses Arcfour as a PRNG - - function Arcfour() { - this.i = 0; - this.j = 0; - this.S = new Array(); - } - - // Initialize arcfour context from key, an array of ints, each from [0..255] - function ARC4init(key) { - var i, j, t; - for(i = 0; i < 256; ++i) - this.S[i] = i; - j = 0; - for(i = 0; i < 256; ++i) { - j = (j + this.S[i] + key[i % key.length]) & 255; - t = this.S[i]; - this.S[i] = this.S[j]; - this.S[j] = t; - } - this.i = 0; - this.j = 0; - } - - function ARC4next() { - var t; - this.i = (this.i + 1) & 255; - this.j = (this.j + this.S[this.i]) & 255; - t = this.S[this.i]; - this.S[this.i] = this.S[this.j]; - this.S[this.j] = t; - return this.S[(t + this.S[this.i]) & 255]; - } - - Arcfour.prototype.init = ARC4init; - Arcfour.prototype.next = ARC4next; - - // Plug in your RNG constructor here - function prng_newstate() { - return new Arcfour(); - } - - // Pool size must be a multiple of 4 and greater than 32. - // An array of bytes the size of the pool will be passed to init() - var rng_psize = 256; - - BigInteger.SecureRandom = SecureRandom; - BigInteger.BigInteger = BigInteger; - if (typeof exports !== 'undefined') { - exports = module.exports = BigInteger; - } else { - this.BigInteger = BigInteger; - this.SecureRandom = SecureRandom; - } - -}).call(this); -- cgit v1.2.3-86-g962b